В МГУ научились генерировать истинно случайные числа
«Развитие современных квантовых технологий открыло новые перспективы для создания систем защищенной связи. Наиболее яркий пример — квантовая криптография. Для распределения секретных ключей в системах квантовой криптографии требуется большое количество случайных последовательностей 0 и 1. Для этих целей используются квантовые генераторы случайных чисел», — поясняет Сергей Кулик, доктор физико-математических наук, профессор кафедры квантовой электроники физического факультета МГУ.
Широко распространённые генераторы случайных обычно основаны либо на математических преобразованиях, либо на измерениях состояния физической системы. Как бы ни были сложны математические формулы или физические законы, заложенные в принцип генератора, их последовательности чисел получаются псевдослучайными, потому что их теоретически можно восстановить.
Учёные МГУ разработали и сконструировали такой генератор, последовательности чисел которых можно считать истинно случайными. Дело в том, что в основе действия новой разработки лежат законы релятивистской, а не классической физики. Исследователям удалось оптимально выбрать и сгруппировать фотоотсчёты для исходной последовательности и добиться скорости генерации случайной последовательности скоростью в 64 Мбит/с, 75 Мбит/с и 100 Мбит/с. Сгенерированные последовательности успешно прошли статистические тесты NIST на случайность.
«Результаты измерений над квантовой системой, приготовленной каждый раз в одном и том же состоянии, носят принципиально случайный характер. Поэтому истинная случайность имеет место только в квантовой области», — заключил Сергей Кулик.
Случайные числа широко используются в различных областях науки и техники, например, при вычислении многомерных интегралов, моделировании различных процессов методом Монте-Карло. Наиболее широкое применение случайные числа находят в криптографии. Случайные последовательности используются для секретных ключей в системах симметричного шифрования, генерации паролей, PIN кодов для различных типов пластиковых карт, кодов аутентификации, вероятностных алгоритмов и систем квантового распределения ключей. Практически для всех упомянутых применений требуются случайные числа, полученные исключительно с физических генераторов.
При реализации квантовых генераторов случайных чисел принципиально важно иметь математически доказуемый и физически экспериментально проверяемый процесс измерений над системой, из которого генерируется исходная случайная последовательность. Это позволяет быть уверенным, что происхождение случайности действительно имеет квантовую природу.
Широко распространённые генераторы случайных обычно основаны либо на математических преобразованиях, либо на измерениях состояния физической системы. Как бы ни были сложны математические формулы или физические законы, заложенные в принцип генератора, их последовательности чисел получаются псевдослучайными, потому что их теоретически можно восстановить.
Учёные МГУ разработали и сконструировали такой генератор, последовательности чисел которых можно считать истинно случайными. Дело в том, что в основе действия новой разработки лежат законы релятивистской, а не классической физики. Исследователям удалось оптимально выбрать и сгруппировать фотоотсчёты для исходной последовательности и добиться скорости генерации случайной последовательности скоростью в 64 Мбит/с, 75 Мбит/с и 100 Мбит/с. Сгенерированные последовательности успешно прошли статистические тесты NIST на случайность.
«Результаты измерений над квантовой системой, приготовленной каждый раз в одном и том же состоянии, носят принципиально случайный характер. Поэтому истинная случайность имеет место только в квантовой области», — заключил Сергей Кулик.
Случайные числа широко используются в различных областях науки и техники, например, при вычислении многомерных интегралов, моделировании различных процессов методом Монте-Карло. Наиболее широкое применение случайные числа находят в криптографии. Случайные последовательности используются для секретных ключей в системах симметричного шифрования, генерации паролей, PIN кодов для различных типов пластиковых карт, кодов аутентификации, вероятностных алгоритмов и систем квантового распределения ключей. Практически для всех упомянутых применений требуются случайные числа, полученные исключительно с физических генераторов.
При реализации квантовых генераторов случайных чисел принципиально важно иметь математически доказуемый и физически экспериментально проверяемый процесс измерений над системой, из которого генерируется исходная случайная последовательность. Это позволяет быть уверенным, что происхождение случайности действительно имеет квантовую природу.
Комментарии 0